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Abstract 

A knowledge-based approach to crystal structure deter- 
mination is presented. The approach integrates direct- 
methods and artificial-intelligence strategies to rephrase 
the structure determination process as an exercise in 
scene analysis. A general joint probability distribution 
framework, which allows the incorporation of isomor- 
phous replacement, anomalous scattering and a priori 
structural information, forms the basis of the direct- 
methods strategies. The accumulated knowledge on crystal 
and molecular structures is exploited through the use of 
artificial-intelligence strategies, which include techniques 
of knowledge representation, search and machine learning. 

1. Introduction 

Traditional direct methods explore the phase space and 
evaluate phasing paths by using only very general chemi- 
cal constraints - non-negativity of the electron-density dis- 
tribution and atomicity - and the constraints imposed by 
the amplitude data. While these constraints have proven 
sufficiently limiting for applications to small molecules, 
they may not be adequate for more complex structures. 
The introduction of additional constraints, particularly in 
the form of partial structure information, has often proven 
crucial to the determination of small-molecule crystal 
structures whose complexity goes beyond that normally 
tackled by direct methods, e.g. leu-enkephalin (Karle, 
Karle, Mastropaolo, Camerman & Camerman, 1983) and 
gramicidin A (Langs, 1988). Thus, in the effort to ex- 
pand the applicability of direct methods to more and more 
complex structures, the traditional totally data-driven and 
universal approach may have to be traded in for one that 
is context driven and that can take advantage of all avail- 
able and useful information. Recent results in the theory 
and applications of direct methods show that such an ap- 
proach can now be realized. Specifically, the development 
of a general joint probability distribution formalism which 
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can integrate information from various sources, including 
isomorphous replacement, anomalous scattering and par- 
tial structure information, provides the framework needed 
for a flexible and context-driven phasing strategy. 

A large amount of structural information is available, 
if not usually exploited, at the outset of a structure de- 
termination exercise (Allen, Bergerhoff & Sievers, 1987). 
Its systematic use is not trivial, in part because the infor- 
mation is not available in the form of synthesized knowl- 
edge but rather in the form of coordinate data, defined in 
terms of the external reference frame of a specific unit cell. 
The transformation of data to knowledge and databases to 
knowledge bases must first be accomplished if the vast 
amount of available crystallographic results is to be fully 
exploited. 

By combining structural knowledge with the direct- 
methods tools, the crystallographic image reconstruction 
exercise can be reformulated as an information processing 
task and resolved through the more comprehensive ap- 
proach of scene analysis (Duda & Hart, 1973), as earlier 
envisaged by Feigenbaum, Engelmore & Johnson (1977). 
The concept of scene analysis has been used in the context 
of machine vision to refer to the set of processes associated 
with the reconstruction, classification and understanding 
of complex images. Such analyses rely on the availability 
of a priori domain information, both in the form of tem- 
plates and in the form of rules and heuristics, to locate 
and identify features in a scene and to provide for a full 
interpretation of the scene. By analogy, we use the phrase 
molecular scene analysis to refer to the processes associ- 
ated with the reconstruction and interpretation of crystal 
and molecular structures. 

We are currently designing and implementing a 
knowledge-based system for molecular scene analysis. 
This system incorporates direct-methods probabilistic 
strategies, the experience accumulated in the crystal- 
lographic databases, and knowledge-representation and 
reasoning techniques from artificial intelligence. In the 
system the process of determining the structure of a crystal 
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is likened to an iterative and hierarchical scene analysis 
in which the search is initiated by the mathematical 
tools of direct methods while it is guided by pattern- 
recognition techniques, and rules and heuristics derived 
from chemistry and crystallography. Since the project is 
still at the design and prototyping stage, this paper does 
not describe a final product but rather the strategies and 
tools that have been selected and built to form the core 
of the knowledge-based system. In §2 of the paper the 
direct-methods strategies are presented and in §3 artificial- 
intelligence strategies are presented. The articulation 
between direct methods and artificial intelligence, and 
its implementation as a knowledge-based system for 
molecular scene analysis, is described in §4. 

2. Direct-methods strategies 

The method of joint probability distribution (j.p.d.) forms 
the basis of our direct-methods strategies for molecular 
scene analysis. In recent years a large amount of effort 
has been directed at expanding the applicability of di- 
rect methods to macromolecular structures. In particular, 
j.p.d.'s have been derived to integrate the techniques of di- 
rect methods with those of isomorphous replacement (e.g. 
Hauptman, 1982a; Fortier, Weeks & Hauptman, 1984) and 
anomalous scattering (e.g. Hauptman, 1982b; Giacovazzo, 
1983). These results, which are reviewed in Fortier (1991), 
have led to the formulation of a general j.p.d, framework 
for application to macromolecular structures. 

2.1. General joint probability distribution framework 

It was recently shown that the j.p.d.'s for the iso- 
morphous replacement, anomalous scattering and par- 
tial/complete structure cases are completely isomorphous: 
that is, they have the same functional form and differ only 
in individual expressions of the atomic scattering factors 
(Fortier & Nigam, 1989). Consequently, it is not neces- 
sary to have specialized formulae for each and every case. 
Instead, general j.p.d.'s can be formulated and used. In 
addition, it is an easy task to translate a distribution de- 
rived for a specific case into more general terms. Thus, 
much of the theoretical foundation available already for 
either the isomorphous replacement, anomalous scattering 
or partial/complete structure cases may be reformulated so 
that it can be applied to any case of interest. Distributions 
for a pair (Hauptman, 1982a) and triplet (Fortier, Weeks 
& Hauptman, 1984) of isomorphous structures have been 
fully derived, following the methods described by Karle 
& Hauptman (1958) and Hauptman (1982a). From these 
it is now possible to infer j.p.d.'s for any number of iso- 
morphous data sets. Similarly j.p.d.'s have been derived 
for three- (Cochran, 1955; Hauptman, 1976), four- (Haupt- 
man, 1975), five- (Fortier & Hauptman, 1977a) and six- 
phase structure invariants (Fortier & Hauptman, 1977b). 
Again these results allow distributions for n-phase invari- 
ants to be inferred. 

Several authors have already presented procedures for 
a more general derivation of j.p.d.'s of structure fac- 
tors. We note, in particular, the procedures described by 
Peschar & Schenk (1987) and Castleden (1987) for the 
generation of n-phase invariants, and the method pro- 
posed by Peschar & Schenk (1991) for the derivation of 
triplet invariant distributions for any number of isomor- 
phous structure factors, which incorporates isomorphous 
replacement and anomalous scattering in a unified man- 
ner. It has also been shown that the j.p.d.'s are easily de- 
rived from a maximum-entropy approach (Bricogne, 1984; 
Bryan, 1988). To summarize, we now have at our disposal 
sufficient information to build j.p.d.'s of n-phase invari- 
ants for any number of isomorphous data sets. These dis- 
tributions allow us to integrate information arising from 
a variety of sources, such as anomalous scattering, iso- 
morphous replacement and a priori structural information. 
Furthermore, it is also possible to rely on the use of com- 
puter algorithms for the generation of these distributions. 
We have used programs to generate three-phase invariant 
distributions for the case of two and three isomorphous 
data sets. Peschar & Schenk (1987, 1991) have reported 
computer-aided derivations of j.p.d.'s for n-phase invari- 
ants and for n-isomorphous data sets. We can thus envisage 
a framework within which phasing tools, tailored to spe- 
cific information contexts, are generated dynamically as 
needed. Such a framework would permit an opportunistic 
and highly flexible approach to phasing and to structure 
determination. 

2.2. Global aspects of direct methods: a connection 
with structure refinement 

The goal of a structure determination exercise can be 
summarized as the specification of the vector of atomic 
positions F = (r~...rN) labelled with attributes of atomic 
type, thermal motion parameters and population. Thisgoal 
may be attained through the use of structure factors F ~ -- 
F~exp(i~ '~) ffi IF~exp(i~)lh} (where a ffi 1 . . .M)de-  
rived from various scattering experiments, including iso- 
morphous replacement and anomalous scattering, and a 
priori structural knowledge. The global probability distri- 
bution P of these values can be written, following Gille- 
spie (1983), as: 

M 

P(F,~v~,~If~)  ffi I-I 1-I~[Ft~ - F~"ca'(F)]p~o~(F) (2.1) 
~ = 1  h 

where it is assumed that the measurement of each reflec- 
tion from each experiment is independent (in a proba- 
bilistic sense). The symbol 6 is used to indicate a delta 
function and F~"cal(~ ") is the calculated structure factor. 
The expression, P~o~(r), is a prior probability distribution 
for the atomic positions and is set to a constant value 
when the atoms are assumed to be uniformly and inde- 
pendently distributed in the asymmetric unit. Isomorphism 
is enforced by the fact that the atomic positions are the 
same for each isomorphous data set c~. The atomic scat- 
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tering factors, fa ' s ,  which are assumed known, serve to 
discriminate between data sets. 

At the beginning of the structure determination process, 
the only information available may be the sets of structure- 
factor magnitudes derived from the diffraction experi- 
ments. It is then customary, following the approach of 
Hauptman & Karle (1953), to eliminate the atomic posi- 
tions from (2.1) by integration: P(~,F, ~l f) ~ Po(F, ~1 f). 
This is the standard structure-factor j.p.d. Here, we would 
like to give a simple prescription for both generating and 
combining j.p.d.'s. Suppose there are N scattering groups 
each with a number density p~,(x), where # = 1...N, and 
let their Fourier transform be denoted by U~. The U~'s 
are formally different from, but numerically similar to, the 
unitary structure factors, Uh, and are related to the struc- 
ture factors though the relationship: 

N 
Fg = ~ f~z(h)U~h (2.2) 

#=l 

which can be written in matrix form as F = "fU. If each of 
the scattering groups p~,(x) is distributed independently of 
the others, the probability distribution is (Castleden, 1992) 

N 
P(Pl . . .Pt~)  ~- exp[- ~__ 1 fP#(x) lnp t~(x)d3x] .  (2.3) 

What is required then is that the unknown U values be re- 
expressed in terms of the (partially) known F and thus that 
the non-square matrix f be inverted. This can be carded 
out simplff by using the generalized inverse f# = f r ( f  fr)-, 
so that U = f*F. Hence, in principle, the probability dis- 
tribution (2.3) can be expressed in terms of the structure- 
factor magnitudes and phases. In practice, the p inp terms 
inside the integral sign can be expanded as a power series 
in the density: plnp ~_ ap + bp 2 + cp3. When integrated, 
each term p~ is equal to a sum over invariants of order n. 
Note that an inspection of the generalized inverse shows 
that the separate experiments should be as orthogonal as 
possible, that is to say that the form factors should be 
as different as possible. The structure-factor magnitudes 
15~ can be held fixed at their measured values so that the 
distribution becomes essentially a function of the phases 

which can be maximized with the tangent formula (a 
local steepest ascent method for phases modulo 270. This 
method has a remarkable radius of convergence, especially 
since its complement, the least-squares method, suffers 
so badly. Structures of less than 100 atoms are routinely 
solved starting from random phases, despite the fact that 
these phases usually imply regions of negative electron 
density. 

At the end of the structure determination, when a rea- 
sonable model of the structure is available, it is usually 
the phases that are treated as unknown and integrated out 
of distribution (2.1). Consider the case of a single ex- 
periment M = 1. Because the magnitudes are not known 

precisely, the 6 functions in (2.1) are approximated by 
Gaussian functions: 

6(x) --} exp(-x2/az)/(Tra2) It2 

where a is chosen to reflect the error in the measurement 
of Fn = Fh °~. (A more elegant argument can be made by 
an application of Bayes' rules). Integrating out the phases 

yields (Gradshteyn & Ryzhik, 1980, integral 3.339): 

P(FI b ~ )  = I-[ lo[21fgb'F~(Dl/cr2~lexpl-[lF~l 2 
h 

+ IF~(~)12l/(r~ Ip~o,(~). (2.4) 

If the ah --* 0, the modified Bessel functions can be 
replaced by their asymptotic forms lo(x) ~ exp(x)l(27rx) 1r2 
to yield: 

P( r ~ )  = I I  [47rlFh°~ F~(F)I/cr~]-'r2exp { - E t l S ~  l 
h h 

- IF~(F)I]2/(r~,lp~o,(F). (2.5) 

This procedure is easily generalized to the case of M > 1. 
The negative of the argument of the exponential in (2.5) 
is a chi-square function, the usual function minimized in 
final structure refinement. Its minimum occurs when I~1 
" I~l but the probability (2.4) is maximized when x = 
l,(2xlF'~121a~)lo(2X11~121a2), where x = I 1/1 1, i.e. 
when the calculated structure factors are uniformly less 
than the observed values and are dependent on the error 
estimate of the measurements. 

In many crystal structure determination exercises, and 
particularly in those of protein crystal structures, there 
are several intermediate steps between the initial phasing 
process and the final refinement step. The structural infor- 
mation that is gained in these intermediate steps can be 
recycled to improve the phase estimates of the probabil- 
ity distribution (Main, 1976). From our point of view, as 
more and more of the structure is found, one should pass 
from a distribution such as (2.3) to one such as (2.4). As 
will be shown for the case of a known and positioned frag- 
ment, the resulting probability distribution bears a simple 
relationship to the original j.p.d. Po. 

Assume that in a certain region of space there is a 
known fragment of the structure with density "r(r) and 
let rh = FT['r(r)] be its Fourier transform. The atoms # = 
1...N, forming the unknown part of the structure must be, 
in some way, excluded from this region. Let the excluded 
region be defined by the indicative function x(r) and let 
xz(r) = fvx(r')p~,(r - r ' )dr '  be functions 'blurred' by 
the spatial extent of each atom. If Xh = FT[x(r)] then 
by the convolution theorem X~ = Xhf~,(h). We can thus 
define the prior probability as Pp,io,(r) cx exp[~_~, i X~'(rz)] 
to down-weight the occurrence of an unknown atom within 
the excluded region. Calculating the Laplace transform of 
(2.1) (M = 1) with respect to the Fh gives exp[Al~(F) 
+ ~_~.tX~'(r~,)]. Integrating out the atomic positions F 
will give the characteristic function Cx(A) = Co(A - X-). 
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The subscript o denotes the characteristic function for the 
distribution with no excluded region (X = 0) and the 
equality is an obvious corollary of the definition of X~. 
The inverse Laplace transform performed with a change 
of variables )~' = )~ - ~ gives: 

P(l~- r ) =  lexp[~(l~ - r)]IZ(~)IPo(F- ~ (2.6) 

where Z is a normalization term: 

N 

Z(X) = v-N f ppno,('F)~ = 1-I f exp[xU('Fu)lffi:u/V. (2.7) 
v ~ = 1  v 

This relationship has been used successfully by Beurskens 
et al. (1981) in the DIRDIF program with the approxima- 
tion that X = 0 and that the magnitude IFh - "rhexp(-i~h)l 
is independent of ~h. The latter condition is approximately 
true if either rh or Fh is small or if the initial phase es- 
timate is good so that A ~  remains small during tangent 
refinement. Note that, using Bayes' rule, the known part 
of the structure r Can be considered as a random variable. 
In this case, however, careful attention must be paid to the 
variation of Z(X) which is effectively a function of r. 

Equations (2.1)-(2.7) make clear the connection be- 
tween the initial direct-methods phase determination and 
the final structure refinement and show that they are two 
different aspects of the same underlying distribution. The 
structure-factor j.p.d, is used when the atomic positions are 
completely unknown. This lack of knowledge is reflected 
by the fact that the atomic positions are integrated out. 
Once they have been found then our lack of knowledge 
about the structure-factor phases is evoked and one refines 
only on the magnitudes. In between are the cases of par- 
tial structure knowledge. Greater structure-solving power 
may be available once these different methods are taken 
as two extremes on a continuum and the path between 
initial phase determination and final chi-square refinement 
is 'joined' by a series of steps characterized by equation 
(2.6). 

3. Artificial-intelligence strategies 
Through the general joint-probability framework an ex- 
tensive array of tools can be tailor-built to accommodate 
specific problems in protein crystal structure determina- 
tions. There is also a rich knowledge base from which 
to draw for the recovery and interpretation of protein im- 
ages. Included in this knowledge base is the vast reser- 
voir of structural data available in the crystallographic 
databases, as well as the rules that have so far been found 
to govern molecular architecture and the heuristics and 
methodologies that have proved useful in the reconstruc- 
tion of crystal and molecular structures. We have turned 
to artificial-intelligence strategies to develop a coherent 
framework within which the available molecular knowl- 
edge can be integrated into the phasing tools. 

The use of solution strategies that can draw from gen- 
eral and domain knowledge and that can also learn from 

past experience has been central to artificial-intelligence 
approaches to problem solving. Artificial intelligence has 
long been concerned with the question of how to organize 
and represent knowledge so as to allow for the rapid and 
efficient retrieval of information on which reasoning tasks 
can then be performed. The development of search strate- 
gies is also an important activity in the field of artificial 
intelligence, where it is customary to rephrase problems 
as search problems. Solutions can then be formulated in 
terms of strategies that are used to represent and explore 
the search space and in terms of functions that are used to 
evaluate search states. Finally, much effort has gone into 
the area of machine learning to develop techniques for 
the classification and extension of knowledge. The results 
of research in knowledge representation, search strategies 
and machine learning can contribute to the design and de- 
velopment of a scene-analysis approach to crystal struc- 
ture determination. 

3. I. Knowledge representation 
In molecular scene analysis we are primarily concerned 

with questions pertaining to shape and spatial relationships 
whose answers rely, in part, on the efficient recall and 
analysis of previously determined molecular scenes, and 
on the application of the rules and heuristics of chemistry. 
We have, therefore, developed a knowledge representation 
scheme that consists of three interrelated representations: 
a descriptive representation, which serves as a knowledge 
base of molecular scenes, and two depictive representa- 
tions which are used to carry out the spatial and visual 
analysis of an image (Glasgow, Fortier & Allen, 1992). 

The molecular knowledge base is being implemented 
as a frame system (Minsky, 1975) using the Nial frame 
language (Hache, 1986). Information in the system is or- 
ganized according to both the structural and conceptual hi- 
erarchies of molecular structures. As shown in Fig. l, the 
structural hierarchy separates the information according 
to the building block model of molecular structures while 
the conceptual hierarchy organizes information according 
to the classes, subclasses and instances of the structural 
building blocks. Individual frames in the system are used 
to cluster information on a given structural element or on a 
class of structural elements. As illustrated in Fig. 2, an in- 
dividual frame is defined as a simple data object which or- 
ganizes the information into slot-value pairs. It is the high 
level of flexibility in the type of values a slot can take, e.g. 
numeric and literal data, pointers to other frames, struc- 
tured data, attached procedures etc., that makes a frame a 
versatile and all-encompassing knowledge representation 
tool. It is also possible to attach constraint specifications 
to a slot-value pair. For example, values to be added can 
be constrained to a specified data type or to a given nu- 
merical range. In addition, conditions such as 'if-needed', 
'if-added' or 'if-removed' can be associated with a slot to 
limit or trigger the execution of procedures. In the knowl- 
edge base, individual frames are linked to one another 
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through semantic links. Of particular importance are the 
PART_OF and AKO (a kind of) links which establish the 
dual structural and conceptual hierarchies of the system 
and the inheritance pathways. Properties or values can thus 
be stored at the most general level of the conceptual hi- 
erarchy and be inherited by the more specific levels. A 
frame system can generally be viewed as a taxonomy of 
linked concepts with the knowledge, both descriptive and 
procedural, organized around each concept, similar to the 
object-oriented database model. What further character- 
izes a frame system is its structural flexibility. In partic- 
ular, frames in the system can be instantiated either in a 
static or dynamic mode. In the latter case, both a frame 
and its links to the rest of the frame system can be cre- 
ated dynamically, thus providing an environment capable 
of continued modification, expansion and enhancement. 

Algorithms for creating frame structures for entries re- 
trieved from the Cambridge Structural Database (Allen et 
al., 1991) and the Protein Data Bank (Bernstein et al., 
1977) have been implemented. A system for browsing 
through large knowledge bases of frames is also being 
developed (Martin, Hung & Walmsley, 1992) in paral- 
lel with the design and implementation of the molecular 
knowledge base. In this browsing system, the knowledge 
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aeaCld 1]" AKO ~ AKO 

Fig. 1. Structural and conceptual hierarchies in the molecular knowledge 
base. 
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base is represented as a graph consisting of nodes and arcs, 
as illustrated in Fig. 3. The nodes are used to represent 
frames or other data values while the arcs represent seman- 
tic links or slots. An initial query serves to define a start- 
ing node location in the knowledge base. The node and 
its immediate and/or extended neighborhood of arcs and 
nodes are displayed and the knowledge base can then be 
further explored by following the arcs to connected nodes 
and focusing on new nodes. Focusing on a new frame 
node, for example, brings that node to the centre of the 
graph, displaying its extended neighborhood. Focusing on 
a procedure value triggers the execution of the procedure, 
the results of which are then displayed in a new window. 
The system supports both textual and graphical capabili- 
ties for querying and viewing the knowledge base. Com- 
plex graphical queries are easily constructed with editing 
capabilities that allow for nodes and arcs to be selected, 
deleted, copied, pasted, moved and labelled. The textual 
query facility provides additional flexibility by allowing 
queries to be embedded into programs. 

An important part of protein crystal structure determi- 
nation is the direct inspection of electron-density maps so 
as to determine the location and the identity of structural 
features. It is now recognized that two separate and distinct 
modes of reasoning, the visual and spatial modes, are used 
in the high-level processes associated with image interpre- 
tation (Glasgow & Papadias, 1992) and we believe that 
both modes should be incorporated into automated map- 
interpretation algorithms. Our knowledge-representation 
scheme thus includes two additional components: a visual 
and a spatial representation. These are viewed as working- 
memory representations since they are normally generated, 
as needed, from either the diffraction data or from the de- 
scriptive information retrieved from the knowledge base. 

Occupancy arrays are the usual way of depicting 
electron-density maps. These three-dimensional arrays 
make explicit the shape and relative-size information and 
can thus be used for visual reasoning. It is usually neces- 
sary, however, to segment the arrays into parts or blobs 

~ u , r r ~ , , r  r . . . . . . . . . . . . . . . . . . .  rr,r~','a'mrJT, ./ .... • ......................... ~._ " 'lltJi~l[ 
Frame_ Query: ",3cwr_AA4 ~ Execute tOxt query) 

.1/9 

. . . . . . .  Psz 
. . . • -  

• ", " iJ, o. , . .  

CLA$s~rI¢~TI OM r-'~ 

i z ~t-t,,~cl] 

Fig. 2. Frame data structure for Ala residue. Fig. 3. Graphical frame browser. 
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prior to recognition. In addition, the information contained 
in occupancy arrays is often too detailed to allow for ex- 
tensive computational comparison. Therefore, it is essen- 
tial to translate the occupancy-array representation into a 
simpler one that can capture the relevant shape information 
at varying resolution levels and discard unnecessary and 
distracting details. For example, Greer (1974) proposed a 
skeleton representation to aid in automated interpretation 
of protein electron-density maps. A simplified visual rep- 
resentation is also provided by the topological approach, 
which depicts the shape properties of the electron-density 
distribution through the identification and location of its 
critical points (Smith, Price & Absar, 1977; Bader, 1992). 
It not only provides information on the shape properties 
of the electron-density distribution but also serves as a 
segmentation tool. Such an approach has been proposed 
previously for the interpretation of protein electron-density 
maps (Johnson, 1976, 1977; Grosse, 1980). It has been im- 
plemented in the program ORCRIT where, in particular, 
the canonical features of the electron-density distribution 
are captured through the representation of the network of 
critical points (Johnson, 1976, 1977). We are currently us- 
ing ORCRIT to identify and classify motifs of peak, pass, 
pale and pit critical points in secondary structures and in 
amino-acid residues at varying resolution levels so as to 
construct topological templates for use in pattern recogni- 
tion (Leherte, Fortier & Glasgow, 1992). 

To allow for spatial reasoning, we require a representa- 
tion that explicitly denotes the spatial relationships among 
the parts of a scene, by analogy to the mental maps cre- 
ated by humans. Thus our scheme includes a spatial repre- 
sentation which is implemented in the form of embedded 
symbolic arrays. As illustrated in Fig. 4, the meaningful 
parts of a scene are denoted as components of an indexed 

~,,~,.. 

VAL ALA  

" " ' - - - . .  . . . .  

• ° . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Cysteine 

Fig. 4. Embedded symbolic arrays for the spatial representation. 

array while the hierarchical structure of the scene is cap- 
tured through the embedded nature of the array. Symbolic 
arrays differ from occupancy arrays in several respects. 
Firstly, they provide an explicitly interpreted depiction of 
a molecular scene while occupancy arrays are essentially 
uninterpreted. Logical functions can then be used to reason 
with the information encoded in the symbolically denoted 
features and their spatial relationships. Secondly, symbolic 
arrays provide a simplified depiction of a scene and, in par- 
ticular, one which preserves the spatial relationships but 
not necessarily the precise geometry. Many questions of 
importance in molecular scene analysis can be answered 
or at least filtered, through this simplified representation 
(e.g. questions pertaining to secondary and supersecondary 
motifs in proteins, hydrogen-bonding motifs and configu- 
rational assignments). The information needed to answer 
such questions could also be encoded as propositions. The 
advantage of symbolic arrays over propositional repre- 
sentations lies in their succinct and holistic encoding as 
well as their provision for updating and change. These ad- 
vantages translate into computational efficiency in query- 
ing functions. The scheme for knowledge representation 
presented here is further elaborated elsewhere (Glasgow, 
Fortier & Allen, 1992). 

3.2. Search strategies 

Search strategies have long been central to direct- 
methods procedures. Indeed, the crystallographic phase 
problem is generally solved as a search problem. In the 
initial state only a handful of phases is known. In span- 
ning the phase space, it is hoped that a final or goal state 
will be reached in which enough phases will have been 
determined with sufficient accuracy to compute an inter- 
pretable electron-density map. In this context, the multiso- 
lution approach, resulting either from permuted phases or 
from random starting phases, can be described as a sim- 
ple generate-and-test search procedure. The morphology 
of the search tree is unusual, though. The tree normally 
has a single depth level with a large branching factor. Nev- 
ertheless, this search tree has proven highly successful and 
efficient for most small-molecule crystal structures. When 
used with more complex structures, however, it usually 
meets with failure for a number of reasons. Firstly, as the 
complexity of the problem increases, the number of pos- 
sible solutions that must be explored often exhausts nor- 
mal computing resources. Secondly, the reliability of the 
commonly used figures of merit tends to decrease as the 
complexity of the problem increases: a good solution may 
be developed but it may not be possible to recognize it. 
Finally, the number of false or local minima may increase 
with the complexity of the problem thus decreasing the 
chance of finding the global minimum. Alternative strate- 
gies have been used to circumvent these problems. For 
example, the simulated-annealing search strategy has re- 
cently been proposed as a way of increasing the chance of 
finding the global minimum of the minimizing function, 
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rather than local ones (Sheldrick, 1990). This approach 
has already proven successful in a number of cases which 
had previously resisted the more standard direct-methods 
search procedures. To reduce computing time, S H E L X 8 6  
(Sheldrick, 1990) introduced a two-stage phase refinement 
technique. Similarly, Q T A N  (Langs & DeTitta, 1975) ex- 
plores the phase space using a multilevel search tree. The 
inability of the commonly used figures of merit to prune 
partially developed phase sets has been, however, a lim- 
iting factor. This has emphasized the need for a more 
discriminating figure of merit, a problem addressed by the 
recently proposed likelihood criterion (Gilmore, Bricogne 
& Bannister, 1990). In a number of small-molecule crys- 
tal structures, likelihood has proven extremely useful for 
picking the best solutions among partially developed phase 
sets containing only a handful of phases. It has also been 
shown capable of selecting the best phase sets when ap- 
plied to 2 ,/~ data from the small protein avian pancre- 
atic polypeptide (APP) (Gilmore, Henderson & Bricogne, 
1991). 

With the possibility of embedding direct methods into a 
multilevel search tree, crystal structure determination can 
be formulated as an iterative and hierarchical image recon- 
struction exercise: the phases are determined in shells of 
increasing resolution yielding images that reveal structural 
elements of corresponding resolutions (molecular enve- 
lope, domains, secondary structures, residues). This ap- 
proach not only takes advantage of the structural organiza- 
tion of protein but also allows for the active use of partial 
structure information in the phasing process: any identi- 
fied structural elements can be integrated into the phasing 
tools via the general joint probability distribution frame- 
work. Such an approach requires, however, the evaluation 
and interpretation of a possibly large number of electron- 
density maps which, to be realizable, calls for substantial 
computer assistance. 

Image understanding can itself be formulated as a 
search problem and, specifically, as a constraint satisfac- 
tion problem. In a crystal structure determination, features 
of an electron-density map are interpreted in terms of the 
expected chemical constitution of the crystal. In addition, 
the interpretation must conform to chemical and crystal- 
lographic constraints, as established from earlier experi- 
ments. Thus an approach based on constraint satisfaction 
can be followed that is similar to the one adopted in the 
knowledge-based system P R O T E A N  for elucidating pro- 
tein structures from NMR data (Hayes-Roth et al., 1985). 

Constraint satisfaction is the process of assigning do- 
main values to a set of specified variables such that a set of 
constraints is satisfied. Constraints are normally expressed 
as binary predicates but n-ary constraints are also possible. 
Major et  al. (1991) have defined a constraint-satisfaction 
algorithm for macromolecular modelling as follows. Given 
the variables X -- Ix~, x:...xn } whose values are taken from 
the domains of permitted values D = {dr, d2...dn} and a 
set of constraints C = (cp, q. . . I P e  I 1 . . . n  }, q~ I 1 . . . p  - 1 }), a 

solution is defined in terms of the values of X, taken from 
its domain of values D, that satisfy all constraints in C. In 
molecular scene analysis, the interpretation of an electron- 
density map at, for example, a resolution corresponding to 
the residue level can be phrased as the formulation of hy- 
potheses for the segmented features, denoted by xt, x:...xn. 
The domains, dl, dr . .dn,  of possible values for each fea- 
ture may be restricted to subsets of amino-acid residues, 
according to sequence information, secondary structure in- 
formation, etc. In addition, the hypotheses may have to 
satisfy a set of constraints D related to spatial and ge- 
ometrical relationships among amino-acid residues. This 
definition of constraint satisfaction can be integrated into 
our knowledge-based system of frames. In the frame slot- 
and-filler representation, undetermined variables are de- 
noted by unfilled slots while domains of permitted values 
are defined through the constraint specification facilities of 
frames. N-ary constraints, with N > 1, can be specified in 
the attached procedures that are executed on an 'if-added' 
basis. Both declarative and procedural constraints can be 
expressed at the most appropriate level of the conceptual 
hierarchy since constraints specified at a generic level can 
be inherited by subclasses or instances through the AKO 
links. For example, an instance of glycine can inherit con- 
straints from the general class 'amino-acid residue' and 
from the subclass 'glycine'. Finally, constraints related 
to specific levels of the protein structural organization, 
e.g. secondary-structure architecture, atomic structure of 
residues, van der Waals radii of atoms, can be expressed 
at the appropriate level of the structural hierarchy. 

Within our knowledge-representation scheme, the im- 
age reconstruction process can be defined as the trans- 
formation of an uninterpreted occupancy array into a 
fully interpreted symbolic array. By combining direct- 
methods and artificial-intelligence strategies, this goal is 
broken down into several subgoals which are met by the 
acquisition of partial structure information at the various 
resolution stages of the reconstruction hierarchy. At the 
beginning of the process, a frame is constructed for the 
uninterpreted image. Any available information - e.g. unit-  
cell parameters, density, primary structure - is added to the 
frame. The instantiation of a frame for the new scene also 
creates the appropriate semantic links with other frames 
in the system. The initial state in the search space is 
an uninterpreted or partially interpreted symbolic array, 
associated with the initial occupancy array. New states 
(nodes) are generated in the search tree by the application 
of state transformation rules which consist of formulat- 
ing structural hypotheses for fragments/blobs within the 
current scene. This is achieved by using both the spa- 
tial and visual representations and the functions that op- 
erate on them. In particular, the spatial representation is 
used to analyze existing neighborhoods within the cur- 
rent scene so as to anticipate possible fragments based 
on the known context. The visual representation, on the 
other hand, is used to compare (pattern match) anticipated 
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fragments with unidentified blobs based on visual features 
such as shape and relative size. 

A crucial component of the search paradigm is an eval- 
uation function that measures the goodness of partially 
interpreted images. This function is used in the control 
strategy to guide the search towards the goal of a fully 
interpreted image. We are presently developing such a 
function for the evaluation of reconstructed images of 
molecular scenes (Konstandinos, 1992). When evaluat- 
ing these images, the important questions are whether the 
evolving scene fits the experimental evidence and is con- 
sistent with the constraints of chemistry and crystallog- 
raphy, or with similar scenes that have been previously 
determined, and whether the interpretation results in added 
knowledge. Constraints may be 'hard' or 'soft'. A state 
that does not satisfy a hard constraint is immediately dis- 
carded. Soft constraints, on the other hand, are used to 
provide evidence either for or against a state. Thus the im- 
age evaluation is achieved through the use of (1) the hard 
chemical and crystallographic constraints, (2) the softer 
constraints related to adherence to experimental evidence 
or to previous experience, (3) a measure of the knowledge 
gain, and (4) the direct-methods figures of merit. The eval- 
uation function is used to guide the image reconstruction 
exercise by identifying the best phasing paths to be further 
developed. It is important to note that if it turns out that a 
bad path has been chosen, the search procedure can back- 
track and follow alternative paths. Parallel exploration of 
the search tree is also possible. 

3.3. Learning 
Learning techniques can play an important role in the 

analysis, organization and compression of the vast and 
rapidly growing reservoir of structural data and, there- 
fore, in the transformation of the databases into knowl- 
edge bases. Although several general concepts, rules and 
constraints about molecular structures have been explicitly 
formulated, many still remain buried within the databases. 
In addition, machine learning can contribute strategies for 
improving the performance of a knowledge-based system 
by indexing solution scenarios and providing a mecha- 
nism for the system to learn from its experiences. Sev- 
eral paradigms of machine learning have been proposed, 
for example the connectionist, genetic, analytic and in- 
ductive paradigms (Carbonell, 1989). In the molecular 
scene-analysis project, we have concentrated on the in- 
ductive approach and, in particular, the concept formation 
approach in which learning proceeds through the general- 
ization, characterization and organization of a set of ex- 
amples. 

When reasoning about molecular structures and/or solu- 
tion strategies for their reconstruction, we often proceed in 
one of the following ways. We may have seen several in- 
stances of a given molecular fragment and have observed 
that some of its structural characteristics are the same in all 
of the instances. We can thus form a general concept which 

represents and subsumes these instances and can then be 
used for inference. This follows the generalization-based 
approach to reasoning, which includes the use of gen- 
eral concepts, rules, constraints, etc. Alternatively, when 
analyzing a given molecular fragment we may turn not 
to general concepts but rather to specific instances that 
have a high degree of similarity with it. In this case-based 
approach, inference proceeds through the retrieval of sim- 
ilar cases, followed by comparison and adaptation (Ries- 
bek & Schank, 1989). Clearly, both reasoning paradigms 
rely on some form of learning through which concepts 
or instances have been discovered, compared, classified 
or indexed. Both the generalization-based and the case- 
based reasoning approaches can be accommodated by our 
knowledge base, which includes frames for both instances 
and general concepts, and thus stores both individual cases 
and their generalizations. In addition, since the frames are 
linked to one another through the AKO arcs of the con- 
ceptual hierarchy, the concept frames serve as indices for 
the instances to which they are linked. Through these in- 
dices the subset of the most relevant cases, to be used in a 
case-based reasoning approach, can be retrieved. Because 
of the large number of individual cases, this pre-selection 
step is essential for computer efficiency. 

The majority of the techniques that have been used 
to acquire knowledge from the geometrical information 
stored in the crystallographic databases are numerical or 
statistical in origin. These techniques, which have been 
extensively used in small-molecule applications, have re- 
cently been reviewed by Taylor & Allen (1992). Methods 
that are more closely allied to the artificial-intellegence 
approaches have also been used, particularly for the clas- 
sification and prediction of protein structures (e.g. Hunter 
& States, 1991; Lathrop, Webster & Smith, 1987; Rooman 
& Wodak, 1988; Cohen, Abarbanel, Kuntz & Fletterick, 
1986; Qian & Sejnowski, 1988; Blundell, Sibana, Stern- 
berg & Thornton, 1987). 

For many applications it is not possible to describe the 
parameters of interest in numerical terms. In addition, the 
desired result of a classification exercise is often not a set 
of numbers or statistics but rather a broader conceptual 
categorization and definition. These concerns have been 
addressed by the artificial-intelligence community through 
extensive research in machine learning and, in particular, 
in the areas of conceptual clustering and concept forma- 
tion. Concept formation is concerned with the organization 
of knowledge into concept hierarchies that can then be 
used to explain unclassified instances (Gennari, Langley 
& Fisher, 1989). In general, concept formation methods 
are incremental, translating a stream of instances into a 
concept hierarchy that organizes and summarizes the in- 
stances. New concepts are discovered by the process of 
generalization. 

Most work on concept formation relies on describing 
objects in terms of a list of attribute-value pairs. Such 
a representation is clearly too restrictive for the molec- 
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ular domain, where spatial relations among objects must 
also be described. An emerging area of interest in ma- 
chine learning is structured concept formation, in which 
structured objects - described in terms of components 
and their interrelationships - are formed and organized 
in a knowledge base (Thompson & Langley, 1991). We 
have designed and implemented an incremental concep- 
tual algorithm specifically for objects or scenes composed 
of many parts (Conklin & Glasgow, 1992). The I-MEM 
(image-memory) system manipulates objects or scenes in 
terms of parts or relationships among these parts, rather 
than attribute-value pairs. It rests on a theory of image 
subsumption, based on preservation of parts relationships, 
and uses part deletion as its generalization operator. Since 
similarity is defined in terms of part removal, a multi- 
level hierarchy of concepts is obtained allowing for the 
comparison of the full molecular fragments and of their 
subfragments. Thus when a new instance is presented to 
the established hierarchy, the system can classify it at 
the appropriate level of the hierarchy, including at the 
subfragment levels. At the end of a run the system inte- 
grates the results automatically by creating descriptions of 
the acquired concepts and by establishing the subsump- 
tion links among concepts and instances. In this way, the 
initial collection of database entries is transformed into a 
compressed knowledge base. The system reads database 
entries translated into the frame representation and creates 
a knowledge base of frames as described in §3.1. I-MEM 
has been tested on examples retrieved from the small- 
molecule domain but is now being expanded for applica- 
tions to macromolecules. A more detailed description of 
the I-MEM approach is available in Conklin & Glasgow 
(1992) and Conklin, Fortier, Glasgow & Allen (1992). 

Because the databases are growing rapidly, the need for 
automated knowledge acquisition methods is also grow- 
ing. It is particularly important to develop methods that 
can be used with little, if any, user intervention so that 
knowledge bases, once created, can be updated on a con- 
tinued basis. 

4. Knowledge-based approach to molecular scene 
analysis 

Fig. 5 illustrates our proposed algorithm for molecular 
scene analysis, which consists of five independent but 
communicating processes. The image-anticipation process 
involves the retrieval of motifs from the knowledge base 
according to the available chemical and structural informa- 
tion. In the image-enhancement and segmentation process, 
the experimental electron-density map is subjected to the 
standard noise-reduction and density-modification routines 
prior to its segmentation into distinct blobs]regions that 
correspond to the structural features of the image. The 
pattern-matching process involves the comparison of the 
unidentified features, derived from the segmentation of the 
map, with the anticipated motifs. The possible interpreta- 
tions are then analyzed for their global consistency and 

ranked in the scene-analysis process. Finally, in the re- 
solve process the gained information is integrated into the 
direct-methods tools so as to refine and expand the phases 
and construct a new electron-density map. 

The algorithm is applied iteratively so as to reconstruct 
and interpret images of progressively higher resolution. 
Its final goal is a fully interpreted molecular scene, at a 
resolution matching that of the diffraction data. One it- 
eration through the algorithm corresponds to one level 
of generation in the search tree. It involves considering 
a particular state in the tree, generating the offspring of 
that state through the formulation of possible image in- 
terpretations and evaluating the hypothesized scenes so 
as to determine the next best state. The acquired partial 
structure information is then integrated into the phasing 
tools so as to refine and expand the phases and generate 
new images. This knowledge-based approach follows the 
usual steps of a crystal structure determination which is 
not surprising since the approach was designed to mimic 
the procedure normally taken by 'experts' in the field. Its 
novel aspect and its main contribution are in the effort to 
substitute many of the human interventions by computa- 
tional processes. 

Strategies emanating from the direct-methods and 
artificial-intelligence fields were presented earlier. The fol- 
lowing is a brief summary of how these strategies con- 
tribute to the processes in the algorithm for molecular 
scene analysis. The image-anticipation process relies on 
the organization of the structural information into a knowl- 
edge base of frames. It is through the AKO links of the 
frame system that structural templates can be inferred or 
anticipated given the available chemical information. Cen- 
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tral to the creation of a knowledge base and the process 
of template anticipation are the learning techniques de- 
scribed in §3.3. Several common techniques of image pro- 
cessing, e.g. noise reduction, local averaging, ensemble 
averaging etc., are routinely applied to protein electron- 
density maps to enhance their features and facilitate their 
interpretation. The segmentation of electron-density maps 
remains a difficult problem, though, particularly at low res- 
olution. Critical point mapping techniques (§3.1) are being 
tested to address this problem and are an important compo- 
nent of the process that deals with image enhancement and 
segmentation. The iterative and hierarchical reconstruction 
of a molecular scene will require the analysis and inter- 
pretation of a possibly large number of electron-density 
maps. The algorithms in the pattern-matching process 
must, therefore, be robust and efficient. To meet these 
requirements, our knowledge representation scheme in- 
cludes descriptive, spatial and visual components so that 
pattern matching can itself be formulated as a hierarchi- 
cal process which proceeds from a coarse level to pro- 
gressively more detailed ones. It is in the scene-analysis 
process that the combined artificial-intelligence strategies 
of knowledge representation, search and learning come 
together. Rephrasing the image-evaluation process as a 
search problem and, specifically, as a constraint satisfac- 
tion problem calls for the ability to (1) access a well 
organized and evolving knowledge base, (2) inspect the 
spatial and visual properties of the image and (3) prune 
the search tree through a robust heuristic evaluation func- 
tion. Finally, the resolve process, which involves the reso- 
lution and reconstruction of the evolving image, relies on 
the direct-methods strategies described in §2.1 and §2.2 
to build dynamically the phasing tools that integrate all 
available and useful information and expand the shells of 
estimated phases to a higher resolution. 

A prototype system for molecular scene analysis is 
presently being implemented using the functional pro- 
gramming language Nial (Jenkins, Glasgow & McCrosky, 
1986). The nested array data structure and primitive func- 
tions of Nial allow for simple manipulations of three- 
dimensional lattices. In addition, Nial provides, through its 
artificial-intelligence toolkit (Jenkins et al., 1988), an array 
of programs and techniques that can be used to custom- 
build knowledge-based systems. Of particular interest for 
our application are the symbolic computing facilities, the 
Nial frame language and the ability to treat programs as 
data. Provisions are being made for possible reimplemen- 
tation, at a later stage, of parts of the code in compiler- 
based or parallel languages. 

5. Concluding remarks 

Except for a few very simple cases, the reconstruction of 
three-dimensional molecular scenes is rarely accomplished 
solely from direct techniques. In most cases it relies ex- 
tensively on the pattern-recognition and reasoning abilities 
(often mistaken for intuition) of an expert crystallographer. 

The goal of the knowledge-based approach to molec- 
ular scene analysis proposed here is to make use of the 
extensive amount of information now available on crystal 
and molecular structures so that it can guide the image- 
reconstruction process. By taking advantage of the com- 
plementary strengths of direct methods and artificial intel- 
ligence, it is hoped that crystal structure determination can 
be rephrased as an information-processing task and imple- 
mented in a coherent and comprehensive computational 
framework. Some of the theories, tools and approaches 
that are being used to build a knowledge-based system 
for molecular scene analysis have been described here, 
although we acknowledge that much work remains to be 
done before these translate into a fully operational system. 
We are currently concentrating our efforts on the construc- 
tion of a knowledge base of protein crystal structures, the 
implementation and testing of routines for the automated 
interpretation of electron-density maps, the extension and 
application of the I-MEM conceptual-clustering approach, 
the design of a constraint-satisfaction algorithm for molec- 
ular scene analysis and, finally, the implementation of the 
general joint probability distribution framework. Each sub- 
project can independently yield useful results for the anal- 
ysis of protein structures. 

In this paper we have presented our vision of molecular 
scene analysis and, in particular, of protein crystal struc- 
ture determination. It is a vision that strives to meet the 
delicate balance set by Barrow & Tenenbaum (1981) so 
as to avoid 'oversight' (not seeing things that are really 
present), while not suffering from 'hallucination' (seeing 
things that are not present at all). 
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